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Elementary proof of E + +O limit of renormalised Feynman 
amplitudes: 11. Theories involving zero-mass particles? 

E B Manoukian 
Department of National Defence, Royal Military College of Canada, Kingston, Ontario 
K7L 2W3, Canada 

Received 6 January 1984 

Abstract. An elementary proof of the distributional E +. + O  limit of renormalised Feynman 
amplitudes in momentum space, smeared with Schwartz functions and absolutely conver- 
gent for E > 0, is given for theories involving rigorously zero-mass particles. The proof 
uses only direct and simple methods and establishes the convergence of such amplitudes 
in Minkowski space. 

1. Introduction 

An elementary proof of E + + O  limit of renormalised Feynman amplitudes has been 
given recently (Manoukian 1983) for theories with strictly massive particles using 
only direct and simple methods. For earlier treatments of the problem one may refer 
to for example, Hepp (1966), Hahn and Zimmermann (1968), Zimmermann (1968), 
Lowenstein and Speer (1976). The estimates in our earlier proof rely, in an obvious 
manner, on the existence of a smallest non-zero mass particle in the theory in question, 
and hence breaks down for theories containing, as a subset of their masses, particles 
with rigorously zero masses. We were able to extend our elementary proof to such 
general cases by using direct and simple methods and, in particular, we have avoided 
altogether the use of existing sophisticated mathematical results in distribution theory 
involved with the so-called resolution of singularities (Lowenstein and Speer 1976) 
which are very complex in nature. We prove the distributional E + + O  limit of 
renormalised Feynman amplitudes in momentum space, smeared with Schwartz func- 
tions and absolutely convergent for E > 0, for theories involving rigorously zero-mass 
particles. This establishes the convergence of such amplitudes in Minkowski space. 
Needless to say, the existence of field theory models with zero-mass particles which 
are relevant to the real world makes the proof of the theorem of great importance. 

2. Proof of the E + + O  limit 

A renormalised Feynman amplitude, in momentum space, has the familiar form 
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where 

Dl = [a: + p? - i E  ( a: + p 31, P I ~ O  (2) 

Q l = Z E l  allp,+Z.:'=, blikl, A is a polynomial in its arguments, and for those p,>O it 
may also be, in general, a polynomial in these p;I as well. 

To prove the theorem we only require that for any Schwartz function f ( P )  E Y(rW"") 

is absolutely convergent for E > 0. We then prove that 

exists. 
Let A(P, K,  p, E )  = Z, E"A,(P, K ,  p )  and hence in an obvious notation T, ( f )  = 

Z, e n T : ( f ) .  By introducing Feynman parameters we may write (Hahn and Zimmer- 
mann 1968, Zimmermann 1968, Lowenstein and Speer 1976, Manoukian 1983,1984) 

~ ( f )  = J d ~ f ~ )  JD ~ ~ ( a ,  P, p, E ) [ G , ( ~ ,  P, p 1 1 ~  ( 5 )  
R4m 

where 

GE(a ,  P, p )  =pUp+M2-iE(p-  U p + M 2 )  ( 6 )  
L 

M 2 =  1 alp: 
1=1 

(7) 

and the matrix U is rational in a and continuous almost everywhere in D =  
{ a  = ( a l , .  . . , aL), a, 3 0, ai = l}, and may be extended to a continuous function 
in a everywhere in D (Hahn and Zimmermann 1968, Zimmermann 1968). 
N"(  a,  P, p, E )  is rational in a, and is a polynomial in its remaining arguments, and for 
those pj>O it may also be, in general, a polynomial in these p,-' as well; t is some 
positive integer. 

[G,(a,  P, p ) ] - ' = - ( p *  U p + ~ ' ) ' t ( t +  1) J,' dhl J '  dh[GA(a, P, F)]- ' -~ 

We make use of the following useful identities (Manoukian 1983, 1984) 

A i  

+ ( p -  Up+M2)it(E-l)[G1(a,P,p)]-r-1+[GI(a, P, p)] - '  (8) 

When the second and the third terms on the right-hand side of (8) are replaced in 
turn for [G,(a,  P, p) ] - '  in (5) and the resulting expressions are denoted, respectively, 
by T ; ' ( f ) ,  T ; 3 ( f ) ,  then one readily obtains (Manoukian 1984, see also lemma A l ,  
(i), (ii), (iv) in the appendix) 

L 

I='  
ITZ'(f)l< C, [ dPIf(P)I [ dKIA,(P, K,p)I  n 02 <a, i = 2,3,  (10) 

where DiE = a:+ Q y 2 +  p:. The existence of the E + + O  limit of T,"'( f ) ,  for i = 2 , 3 ,  
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then follows by an elementary application of the Lebesgue dominated convergence 
theorem. The difficulty in proving (4) is not due to T;'(f), T z 3 ( f )  but to the term 
T z ' ( f )  which is obtained by substituting the first term on the right-hand side of (8) 
for [G,(a,P,p)]- ,  in (5) .  Now we focus our attention to  T: ' ( f ) .  To this end we 
introduce a Vm function O s x ( x ) s  1 (Lowenstein and Speer 1976, Manoukian 
1983, 1984) defined by x ( x ) = O  for x < f ,  and x ( x ) = l  for x > $  We set x =  
p o U p o / ( p .  V p + M 2 ) .  We then write T : ' ( f )  = T z ' ( f ) , +  Tz1(f)2, where 

~ : ' ( f ) ,  = - t ( t +  1) I,.. dPf (P)  Jb d a  JE1 d ~ l  I:, d ~ ~ " ( a ,  p, P, 

C 1 ( f ) 2  = - t ( t +  1)  IR4" dPf (P)  ID d a  IE'  AI 

- X ( X ) I  

(p '  up+M2)2[GA(a, p, p)1-f-2, ( 1 1 )  

dA N"(a ,  p,  CL, E ) X ( X )  

x ( p -  Up + M ~ ) ~ [ G , (  a, P, F ) ] - ' - ~ .  (12) 

Due to the presence of the function [ l - x ( x ) ]  in ( l l ) ,  we effectively have in (11) 
poUpo S 2( pup + M 2 )  and therefore [pEUpE + M 2 ]  S 5 [pUp  + M 2 ] .  Hence for all A 3 0 
we have in ( 1 1 )  

[GA ( a ,  P, / L ) ] - , - ~  S [PUP + M2]-'-2 S Cr[p,VpE + M2]-r -2  

S c, [ up, + Id2]-, ( p ' up + M2) - 2 .  (13) 

(p,Up, 3 p' u p  + p o  upo+ M2). 

Therefore 

lZ1(f)lls C: IR,. dPIf(P)I Ja 1' dAl 1' dAlN'(u,P, p, E)I [P~UP~+M~I- '  
D A i  

for 0 s E s 1 ,  and where in writing the last inequality we have used lemma A1 (iv). 
The existence of limE++oTz'( f)' then follows from the Lebesgue dominated conver- 
gence theorem. Now we turn our attention to Tz' ( f )2 .  Upon writing 

(15) 

using the identity in (9),  integrating over P by parts and using the fact that f ( P ) ,  
together with all of its derivatives, vanish rapidly at infinity, we obtain 

N " ( a ,  P, p, E )  = c Ebp6Nabc(a, P, p ) ,  
b.c 

x[G,i(a, f', P ) I - ' ( P *  u~+M2)2(~ou~o)-f- '  C x L ( P O ,  X, a)hL(P), (16) 
i 

where we remark that x: may be bounded by a polynomial in p o  independent of a, 
and it vanishes for x < f  due to the property of the function ~ ( x ) ;  h t ( P ) ~  9'(R4"). 
Hence we have effectively in (16) the bound 

l(poupo)-l(poupo)-rJs C ' [ p .  u p + M 2 ] - 1 [ p E u p ,  + M 2 ] - ' .  (17) 
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Also we may use the bound as in (Manoukian 1984) 

GA(a, P, p)lP1s l/A[p* U p + M 2 ] .  

Accordingly, 

X IN=(a, P, P)I[PEUPE + M21-' <a, (19) 

for all 0 s  E s 1,  by using finally lemma A1 (v). The existence of lime++" T;'(f), 
then follows from the Lrbesgue dominated convergence theorem. This completes the 
proof of the statement in (4). Explicity we have for lima++o T,(f) = Tg(f), where the 
latter is given by 

x ( p '  u p  + M2)2( pOupO)-'- '  X : (  P O ,  x, a)h: (P) .  
i 

Appendix 

In this appendix we give an elementary lemma which is useful in the estimates used 
in the rest of the paper. 

Lemma 
L 

1=1 
(i) IRdm dPf(P) dKA(P, K ,  pCL, E )  n D 2 ,  ( A l l  

is absolutely convergent for E 3 0. 

A(P, K,  p, E )  in it replaced by A,(P, K ,  p )  is abolustely convergent for E 3 0. 

absolutely convergent for E > 0. 

(ii) Let A(P, K,  p, E )  = Z, E"A,(P, K,  p ) ,  then the expression in ( A l )  with 

(iii) The expression in (3) with A(P, K,  p, E )  in it replaced by A,(P, K ,  p )  is 

(iv) [R4m dP(f(P)I [ dalN"(a,  P, P, E ) ~ [ P E ~ P E  +M21-' 
D 
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where N & ( a ,  P, p )  is defined in (15). 
The proof of (i) follows from the estimate (Zimmermann 1968) IQZ+p2-  

iE (Q2+p2) /SC~(Q:+pz) ,  C,>O for ~ 3 0 .  The proof of (ii) follows from part (i) 
and the fact that E 2 0 is arbitrary. The proof of (iii) follows from (ii) and the estimate 
(Zimmermann 1968) ( Q ~ + p 2 ) s C : l Q z + p 2 - i ~ ( Q Z + p 2 ) l ,  C:>O. for E > O .  The 
proof of (iv) is given in (Manoukian 1984). To prove (v)  scale pa by a parameter 
A > 0 (Lowenstein and Speer 1976) in (5) in Euclidean space. The resulting expression 
then becomes 

J dPf(P, Ap') J da ~ ~ p ' ~ ( ~ ) ~ + l ~ ' N ~ ~ ( a ,  P, p )  
R4* D b.c 

X [p. Up + A 'p' Up' + M2]- ' ,  

and is absolutely convergent. Using the elementary inequality 

[p. Up + A2po Upo+ hiz)/( p -  Up + p o  Upo+ M 2 )  S 1 + IA * - 11, 
we obtain from the absolute convergence of the integral in (A2) that 
r r 

is absolutely convergent. Since the parameters A > 0, E k 0 are arbitrary the statement 
in (v) follows. (Here it is worth noting that due to the property of f ( P ,  AP'), given 
any positive, arbitrarily large, integer N we may find a positive constant D, and choose 
a positive constant d arbitrarily large such that 

I f ( P , A P o ) I s D ( l + d  c p?+dA2 

with A Z 2  d-' for the validity of the latter inequality. Equation (A3) is absolutely 
convergent with f ( P ,  APo) in it replaced by (1 + d Zfl, ~ f + Z r = ~  pPZ)-N and with N 
chosen sufficiently large). 

m m 

p y 2 ) - N s D ( l + d  f p f +  1 pp2)-N,  
1 = 1  1=1  1 = l  1=1 
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